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V. Introduction

Conventional mammography has been shown to play an important role in detection
and staging of breast cancer in older women. For younger women who frequently have
radiodense breast tissue or women with silicon implants, rendering breast cancer diagnosis
with conventional mammography is problematic. When mammographic findings and clinical
findings concur regarding the possibility of a lesion being malignant, usually a fine-needle
aspiration biopsy will be performed for definitive diagnosis. The false positive rate is high;
only 20-30% of lesions suspicious for cancer at mammogram are actually positive for cancer
at biopsy. In general, mammography is limited to detect a tumor several millimeters or larger
in size. Because of difficulty with early detection, clinicians are sometimes limited to treat
larger size cancers, which in many cases have already metastasized. Accurate definition of
tumor size, number, and margins is highly critical in the clinical determination of
conservation treatment versus mastectomy. A role exists for an imaging method that can
improve sensitivity for detection of small lesion and to improve the specificity for better
staging of the disease. To provide the best chance of overall survival, breast cancers need to
be accurately staged for systemic treatment and optimal conservation surgery. Traditionally,
the gold standards for such assessments are clinicopathological staging and histopathological
typing and grading of malignancy. In the classical histopathological approach problems exist
inherently, predominantly, the accuracy of the initial biopsy procedure and the variable skills
applied to its histological assessment. Development of a new modality to remove sampling
errors, improve specificity and produce a grading of tissues that relates to establish biological
criteria would be very useful.

Over the last few years, magnetic resonance imaging (MRI) and spectroscopy (MRS)
have emerged as one of the most promising clinical tools to fill the gap between clinical needs
and information obtained by conventional breast imaging and pathological methods.
Preliminary results indicate that MRI may be more sensitive than conventional x-ray
mammo%raphy in detecting small lesions. Cancers have typical metabolic characteristics in
3Ip and '"H MRS including high levels of phospholipid metabolites and a cellular pH more
alkaline than normal. Although these alone are not unique for cancer they are very useful
diagnostic information in appropriate clinical settings. MRS is capable of distinguishing
benign and malignant lesions in a particular anatomical site and to be a specific diagnostic
discriminant in a particular situation. It has been demonstrated to be useful to improve the
specificity of the MR imaging of breast. Some metabolic characteristics appear to be
prognostic indices and correlate well with the response of treatment. The improvement of
specificity will reduce the number of biopsies performed to confirm false-positive
mammographic findings and more effectively assess the results of treatment. Many of these
progresses are based on the advances of nuclear magnetic resonance (NMR) studies of
perfused breast cancer cells and tumor-bearing animal models. One of the major limitations of
the application of NMR methods both in vitro and in vivo is its low sensitivity. The sensitivity
determines the ultimate cancer detection capability and the resolution in image and in
spectrum. In this study, a high temperature superconductor (HTS) working at very low
temperature will be used to reduce electronic noise and significantly improve the sensitivity of
detection. It will dramatically increase the sensitivity and improve the resolutions. The
improvement will be verified by comparing the sensitivity with that of a conventional probe.




The improvement of detection sensitivity will provide a more accurate diagnosis, and it may
become possible for early prediction of tumor response to therapy. The probes will be
constructed with YBa,Cu;O; material and tested in two well defined experiments: an in vitro
cell metabolism study on a 9.4 T spectrometer and an in vivo tumor bearing animal study on a
4.7 scanner. In the cell metabolism study, the breast cancer cell line MCF7 and its variants
will be studied in terms of characteristic differences of their *'P spectra during growth phase
and under effects of Tamoxifen. In the in vivo animal study, MCF?7 cells and its variants will
be grown as xenografts on nude mice. The differences of 31P spectra during progress of
tumor and responses to Doxorubicin and Tamoxifen will be studied. The high-resolution
proton imaging experiments of vasculature of tumor will be conducted using both
conventional copper probe and the proposed HTS probes.

VL. Body

In the first year of the project, the design of self-resonant probes for high-resolution
NMR has been completed. The receiver coil uses thin-film, high temperature superconductor
(HTS), YBa,Cu30;. The transmitter coil is a standard room-temperature coil. The probe is
designed to fit either a 9.4 T machine for in vitro cell study or a 4.7 T machine for animal
study. The coils are detachable so that different coil can be substituted in and out of the
different machines and for different nuclei. Three identical cell perfusion apparatus for the
NMR study of breast cancer cell metabolism have been constructed and tested. The apparatus
was tested using known standard compounds. To study the metabolism of breast cancer cells
for an extended period of time, the cells are continuously perfused with nutrients. During
perfusion, the breast cancer cells are restrained in agarose gel-thread matrices. A protocol for
making agarose gel-thread matrices containing MCF7 breast cancer cells is established.
Besides the above-mentioned tasks, some of the infrastructure and preparation works
necessary for conducting the proposed research have been accomplished including relocation
of a 400 MHz machine and renovation of laboratories.

In the second year of this project, we have fabricated and tested a HTS coil, as well as,
studied the *'P spectroscopic differences of MCF 7 cells and its variants and their responses to
Tamoxifen and Doxorubicin. Based on the test done at 77 0K, the HTS coil has a resonance
frequency 401.6 MHz and the Q value for the coil is 650. This is better than we expected in
the design. Since the coil is going to be mounted in the cryostat on a sapphire substrate and
cooled below 40° K, the Q should increase further. We have studied the differences in the 3p
NMR spectroscopic profiles for drug sensitive MCF7 cancer cells and their multidrug
resistant variant MCF7/ADR cells. The cells are embedded in agarose gel threads and
perfused with growth medium during the NMR studies. Many detailed phosphorus
metabolites have been identified. There may be some subtle differences in the spectra of the
two cell lines. However, the differences are not conclusive using the conventional probe. We
have successfully demonstrated drug sensitive MCF7 cells, which were dramatically affected
by 2 uM Doxorubicin within two hours perfusion and not responsive to Tamoxifen up to 12
hours. In contrast, 2 pM Doxorubicin was without any effect on multidrug resistant
MCF7/ADR cells and the *'P NMR spectrum did not differ appreciably after addition of
Doxorubicin. In order to have a highest S/N in the in vivo studies, a great deal of efforts has




been made to ensure a reliable NMR system and a contamination free cell culture
environment. The scan parameters are optimized. The magnetic field drift during the long
acquisition time is negligible. All the potential cell contamination sources are eliminated.

In the third year, we concentrated on the in vivo animal study. The MCF7 wild type
human breast cancer cells and its drug resistant variants were grown as solid tumor
xenographs in athymic nude mice as the animal model. This in vivo animal study was a
continuation of our previous in vitro cell study. The results from the animal model will be
used to confirm whether the differences seen in vitro are also observed in the in vivo spectra
obtained for the tumors growing in nude mice. The in vivo NMR imaging and spectroscopy
studies of the solid tumor have been providing information regarding (i) heterogeneity and
microvasculature of tumor, (ii) energy metabolism, (iii) tumor pH, (iv) tumor hypoxia, (v)
observed predictive response to antiestrogens and Doxorubicin even before regression by
tumormeter measurements. Besides this in vivo animal study, we also have completed the
integration of the Oxford Spectrostate cryostat with the HTS probe. The whole system
includes HTS coil, mounting facilities, the fine tuning paddle and a copper impedance
matching loop and the preamp.

In the third year, we also have procured the specialized cryo-valves, low temperature
components and Oxford cryostat. The HTS probe was assembled with the cryostat at
Quantum Magnetics Inc (subcontractor). The whole HTS probe underwent a final evaluation
for its operation characteristics. In this year the research effort was concentrated on the in
vivo localized spectroscopy and micro-imaging studies. A localized spectroscopy technique
ISIS (image-selected in vivo spectroscopy) technique has been implemented and tested. The
intended selected volume was well defined. To study the progress of tumor a series of the in
vivo 3'P spectra were taken from MCF7/ADR drug resistant tumor on 4, 6, 8, and 12 days
after cell implantation. The spectra clearly showed the gradual decreases of phosphocreatine
and ATP. The spectra also showed the increase of inorganic phosphate. The potential
malignant markers such as phosphomonoester and phosphodiester signals were weak. This
weak signal detection may be improved by replacing the conventional RF probe with the
proposed HTS probe. The spectra from the non-involved control leg demonstrated no
metabolic changes during this period. The consistent spectral 1nten51t1es also demonstrated
the consistency of the NMR machine. The results from these in vivo 3p spectroscoplc studies
were similar to the results from the in vitro cell studies. The signal-to-noise ratio of the in
vivo animal studies was better. This was primarily due to more cells involved in the in vivo
studies. In the third year, we have also studied the small blood vessels of mouse using NMR
microscopic imaging technique. The in-plane spatial resolution was 30 um. A series of high
quality detailed images revealed the fine microscopic structures of mouse capillaries.

For the forth year, we continued the in vivo spectroscopy study. We had constructed
an improved cell perfusion system (Figure 1). The improved cell perfusion system contained
both a negative pressure and a positive pressure part before and after the pump. These
negative and positive pressure parts helped with the removal of air bubbles in the medium.
They also served as reservoirs to trap the air. An air bubble trapped in the NMR tube would
cause magnetic field inhomogeneity and, consequently, degrade the quality of the spectrum.
Using the improved perfusion system, the proposed cell metabolism studies could be extended




to a much longer time, more than 6 days. In the previous study, the experiment could only run
up to 14 hours. With this improved perfusion system, many time consuming experiments can
be performed more reliably and the signal-to-noise ratio has been dramatically improved.

MCF7/WT (wild type) breast cancer cells (~10%) were grown as conventional
monolayers and harvested as single cell suspensions, which were then embedded in agarose
gel threads. These cells embedded in agarose threads were transferred to a NMR tube and
then perfused with culture medium using the new perfusion system. The details of cell culture
and making agarose gel-thread matrices were reported in previous years. Figure 2 shows an
improved NMR spectrum. Phosphorus metabolites can be easily identified including
phosphoethanolamine (PE, 4.21 ppm), phosphocholine (PC, 3.66), inorganic phosphate (Pi,
2.47), glycerophosphoethanolamine (GPE, 0.92), glycerophosphocholine (GPC, 0.37),
phosphocreatine (PCr, -2.61), y-adrinophosphate (y-ATP, -5.05), a-adrinophosphate (a-ATP,
-10.15), diphosphodiester (DPDE, -10.78, -12.53), and B-adrinophosphate (B-ATP, -18.70).
The spectrum is an accumulation of 1800 transients and the repetition time is 2 seconds. The
line broadening used is 10 Hz. The signal-to-noise ratio is significantly better than the results
in the previously reported (see the insert). The line width of the y-ATP peak is 50 Hz. The *'P
NMR spectrum can be deconvoluted. Each individual component of phosphorus metabolites
can be separated from the spectrum (Figure 3). The individual peak-height and the integral
under the peaks can be calculated and listed as in the inserted table. The differences between
the original spectrum and the fitted curve shown on the bottom of the figure indicate the
decomposition of the peaks is complete.

Since the signal-to-noise ratio of the NMR spectrum is usually low, sometimes a long
scan time is needed. This long data acquisition time prevents some fast changing experiments
such as drug effects on the metabolism of breast cancer cells. With the improved perfusion
system, long term in vivo study becomes feasible. Figure 4 shows a long term in vivo >'P
NMR spectroscopy study of MCF7 breast cancer cells. A serious of >'P spectra over 5 days
was obtained. Each spectrum is an accumulation of 3 hours, 5370 transients and 2 seconds
repetition time. The line broadening is 10 Hz. Only every other spectrum is shown in the
Figure 4. The changes of each phosphorus metabolites can be easily studied. During this time,
PC, GPE and GPC increases while other phosphorus metabolites stay constant. Changes of
individual phosphorus metabolites of MCF7/WT (wild type) cells over first 72 are carefully
studied. Figure 5A shows the concentrations of 6 out of 11 phosphorus metabolites: PE, PC,
GPC and DPDE. Figure 5B shows the relative intensities of these metabolites as functions of
time. During the first 72 hours, GPE and GPC continuously increase while PE and DPDE
remains constant. The PC peak increases initially and it approaches a plateau later. The
increases of GPE and GPC indicate the cell proliferation. Figure 6A shows the concentrations
of another five phosphorus metabolites a-ATP, B-ATP, y-ATP, PCr, and Pi. Figure 6B shows
the relative intensities as functions of time. During the course of study, ATP and Pi
continuously grow and PCr remains constant.

With the improved NMR perfusion system four drug sensitivity studies were
conducted using iodoacetamide, rotenone and barbital with different concentrations. 10°
MCF7/WT breast cancer cells embedded in the agarose gel were first perfused with growth
medium. After the system is stabilized (~2 hours after perfusion with medium), a series of




forty-two one-hour 31p NMR spectra were taken. Each spectrum contains 1700 transients with
1 second repetition time. After 17 hours baseline study, ImM iodoacetamide (or 0.5 mM
jodoacetamide, or 1 mM rotenone, or 0.5 mM barbital) was added in the perfused medium.
Figure 7 and Figure 8 shows the phosphorus metabolites concentrations plotted as functions
of time. Six metabolites are in Figure 7 and the other five metabolites are in Figure 8. Figure
7A shows the absolute concentration changes of the PE, PC, GPE, GPC and DPDE. Figure
7B shows the relative concentration changes of these metabolites to the concentrations at the
beginning of the study. After perfusion with iodoacetamide, PE increases dramatically and
then decreases. GPE and GPC show slightly increases initially and decreases afterwards.
DPDE shows continuous decreases. In Figure 8, it shows the other five phosphorus
metabolites: a-ATP, B-ATP, y-ATP, intra- and extra- cellular Pi. After perfusion with
iodoacetamide, ATP increases slightly and then decreases. The rates of decreasing GPE, GPC,
DPDE and ATP depend on the concentrations of iodoacetamide. Iodoacetamide is an inhibitor
of the electron transport chain and consequently it will change the respiratory states of the
cells. While the concentrations of high-energy phosphates decreases, the intracellular Pi
continuously increases. A new extracellular Pi peak appears immediately after the drug
perfusion and the concentration of the extracellular Pi increases for few hours before it
disappears due to the perfusion. The ability of detection of extracellular Pi and separated from
the intracellular Pi is new and exciting.

The NMR T1 relaxation times of all the phosphorus metabolites of MCF7 breast
cancer cells were measured with the improved NMR perfusion system. Since some of the T1
of the phosphorus metabolites are long, the T1 measurement is difficult. It requires a long
measurement time. The T1 measurement of the phosphorus metabolites becomes feasible only
with the improved perfusion system. A saturation recovery technique has been used for the T1
measurement in this study (Figure 9). A series 16 RF pulses flips the magnetization to
horizontal plane first. It follows by a 90° pulse and the data acquisition. The measured T1
relaxation times for each phosphorus metabolites are listed in the table in the Figure 9. The T1
values vary from 0.38 seconds for B-ATP to 12 seconds for GPE.

Key Research Accomplishments

The accomplishment in the forth year is highlighted in the following Statement of Work.

I. Probe Design (10/96-09/98., 24 months)

162 MHz *!P Probe for Cell Metabolism Study on 9.4 T machine

Detail the design of HTS probe for 9.4 T NMR machine (complete)

Procure specialized cryo-valves and low temperature mechanical and electrical
components (complete)

Order cryogenic preamplifier and test its specifications (complete)

Fabricate the components of HTS probe (complete)

Assemble the HTS probe (complete)

Construct conventional copper probe for comparison (complete)

Evaluate components and test the operation characteristics of HTS probe. Determine
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11.

the SNR gain as function of temperature on conductive and non-conductive samples
(in progress)

Cell Metabolism Study (02/97-07/98. 18 months)

The cell metabolism study and in vivo animal study have begun. The initial phase of the

studies will be using conventional room temperature probes. It will serve as comparison
studies.

1.
2.

3.

To construct the perfusion apparatus and setup the perfusion experiment (complete)
Obtain 3'P spectra of MCF7, MCF7/III, MCF7/LCC2 and MCF7/LY2 in agarose gel
in order to compare the SNR improvement by HTS probe. (in progress)

To determine the lowest cell density which still can have a good SNR in a reasonable
acquisition time. A study of MCF7 cell proliferation in Matrigel from a low starting
cell density will be conducted. (complete)

To study of the effect of Tamoxifen and growth effectors on these breast cancer cell lines.
(complete)

III. In Vivo Animal Study (04/98-09/00, 30 months

1.

To obtain in vivo *'P MRS spectra during growth and progression of MCF-7, MCF-
7/MIII, MCF-7/LCC2 and MCF-7/ADR tumors in athymic nude mice using the
conventional probe as well as the HTS probe. Following groups will be studied: (in
progress)

(i) Normal athymic nude (10 animals).

(i1) Mice with MCF-7 tumors in one leg (10 animals).

(iii) Mice with MCF-7/ADR tumors in one leg (10 animals).

(iv) Mice with MCF-7/LCC2 tumor in one leg (10 animals).

(v) Mice with MCF-7/MIII tumor in the other leg (10 animals).

To study the 31p MRS of the different tumors at different times after treatment with
Doxorubicin and Tamoxifen used singly or in combination. (in progress)

To study Tamoxifen:

(i) Mice with MCF7 tumor in one leg and MCF7/MIII tumor in the other leg (15 animals).
(i) Mice with MCF7 tumor in one leg and MCF7/LCC2 tumor in the other leg
(15animals).

(iii) Mice with MCF7/MIII tumor in one leg and MCF7/LCC2 tumor in the other leg (15
animals).

(iv) Mice with MCF-7 tumor in one leg and MCF-7/ADR tumor in the other leg
(15animals).

To study Doxorubicin:

(I) Mice with MCF-7 tumor in one leg and MCF-7/ADR tumor in the other leg, but treated
with one or three cycles of Doxorubicin treatment (30 animals).

(i) Same as group (I) but treated with one or three cycles of Doxorubicin in combination
with Tamoxifen (30 animals).




3. Utilize a high resolution MRI and a gradient-echo dynamic contrast enhancement
technique to examine capillary densities in tumors and the relative permeability or
leakiness of the capillaries in the different tumors before and during the different
stages of treatment with Tamoxifen and/or Doxorubicin. These will be done at the
same time when task (2) is performed. (same time as (2)) (in progress)

Reportable outcomes

1. An improved perfusion system has been constructed. The signal-to-noise ratio of the in
vivo >!P spectrum has shown significant improvement. The in vivo study can be extended
from 14 hours to longer than 6 days. Due to this improved capability of long in vivo
study, the drug sensitivity of MCF7 breast cancer cells has been studied more accurately
in time with much lower drug concentrations.

2. The quality of the *'P spectrum has shown dramatic improvement. The linewidth of the
3lp peaks is in the order of 50 Hz, which is significantly better than the previously
reported ~100 Hz. All the phosphorus metabolites peaks are well separated in the
spectrum. Consequently, the concentrations of each individual phosphorus metabolites
have been measured more accurately. The changes of phosphorus metabolites
concentrations have been studied in every hour and over 6 days.

3. Two postdoctoral fellows, Dr. Yuling Chi and Dr. Jienwei Zhou, and one MD/PhD
student Mr. Emmanuel Agwu are supported by this grant.

4. Two U.S. Army training grants have been received based on this research:

e “MR Sensitivity Improvement Using High Temperature Superconductor for RF Probe”
(DAAGS55-98-1-0187)

e “A Training Program in Breast Cancer Research Using NMR Techniques”
(DAMD-17-00-1-0291)

VII. Conclusions

For the fourth year there has been a significant improvement of the in vivo
spectroscopy study. We have constructed an improved cell perfusion system. Using the
improved perfusion system the duration of the cell metabolism studies has been extended to
longer than 6 days, which is much longer than the previously reported 14 hours. This long and
stable study significantly improved the signal-to-noise ratio of the NMR spectrum. Many
phosphorus metabolites have been identified including: phosphoethanolamine (PE),
phosphocholine (PC), inorganic phosphate (Pi), glycerophosphoethanolamine (GPE),
glycerophosphocholine (GPC), phosphocreatine (PCr), y-adrinophosphate (y-ATP), a-
adrinophosphate (a-ATP), diphosphodiester (DPDE), and B-adrinophosphate (B-ATP). Some
of the entwined peaks, particularly in the PE/PC, GPE/GPC, and intra- and extra-cellular Pi
regions, can be well separated. With the improved NMR perfusion system four MCF7 breast
cancer cells drug sensitivity studies were conducted. Drugs with different concentrations were
perfused through the NMR containing the cancer cells. The concentrations of the high energy
phosphates such as ATP and PCr decreases and the intracellular Pi increases. The GPE and
GPC shows a slight increase initially and a decrease later. The changes of phosphorus
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metabolism indicate the cells were under stress when first exposed to the drug and later they

were overcome by the drug toxicity.
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